

Cross-layer Optimization with Real-time Adaptive Dynamic Spectrum Management for Fourth Generation Broadband Access Networks

Jeremy Van den Eynde Chris Blondia

- Introduction
- Approach
- Current state
- Summary

In the beginning, we had few kbit/s

And it was slow

- Technology evolved, offering higher bandwidths, and demands increased
 - 56k dial-up
 - ADSL
 - ADSL2, ADSL2+
 - VDSL

- Technology evolved, offering higher bandwidths, and demands increased, requiring technology ...
 - 56k dial-up
 - ADSL
 - ADSL2, ADSL2+
 - VDSL

Better!

er:
Faster!

Stronger!

- Current DSL generation allows rates of up to only 100 Mbps
- This is mainly due to
 - copper wire length
 - crosstalk

Introduction

- Current DSL generation allows rates of up to only 100 Mbps
- This is mainly due to
 - copper wire length
 - Bring Fiber to the Home: FttH!
 For all!
 - Get on with it!

Yeah, get on with it!

crosstalk

- Current DSL generation allows rates of up to only 100 Mbps
- This is mainly due to
 - copper wire length
 - Bring Fiber to the Home: FttH!
 For all!
 - \$\$\$\$ == ⊗
 - Intermediate step
 - Fiber to the Curb: FttC!

crosstalk

- Current DSL generation allows rates of up to only 100 Mbps
- This is mainly due to
 - copper wire length
 - crosstalk
 - electromagnetic coupling between wire-pairs

And there are many wire-pairs!

What is this about?

- Cross-layer Optimization with Real-time Adaptive Dynamic Spectrum Management for Fourth Generation Broadband Access Networks
 - Dynamic Spectrum Management
 - Physical allocation resource techniques
 - Spectrum Management
 - Vectored transmission

- [...] Real-time Adaptive Dynamic Spectrum Management [...]
 - DSL already has DSM
 - Dynamic refers to different scenarios
 - Worst-case is envisioned, thus very conservative
 - Use available information to adapt in real-time

What is this about?

- Cross-layer Optimization with Real-time Adaptive Dynamic Spectrum Management for Fourth Generation Broadband Access Networks
 - OSI: standardized reference model for communication
 - Layer provides service to layer above

Image: http://upload.wikimedia.org/wikipedia/commons/2/2b/Osi-model.png

- Cross-layer Optimization [...]
 - Cross-layer: interaction between any layer
 - Unidirectional or bidirectional
 - Use extra information to our advantage!

Image: http://upload.wikimedia.org/wikipedia/commons/2/2b/Osi-model.png

 Cross-layer Optimization with Real-time Adaptive Dynamic Spectrum Management for Fourth Generation Broadband Access Networks

4GBB, the intermediate step between DSL and

FttH

What is this about

- So ...
- Cross-layer optimization of physical layer and upper layers
 - Faster data rates
 - Stable networks
 - Green devices
- Intermediate solution while waiting for economic feasibility of our FttH

APPROACH

- 1. Construct a flexible and general cross-layer system model
- 2. Cross-layer optimization
- 3. Development of a realistic 4GBB simulator and performance evaluation

- 1. Construct a flexible and general cross-layer system model
 - We will focus on the upper layers (i.e. L2 and up)
 - What layers will be involved?
 - What are our degrees of freedom for each layer?
 - What types of traffic will we consider?
 - What metrics are important for us?
 - What new interfaces do we create?
 - For up- and downstream
- 2. Cross-layer optimization
- 3. Development of a realistic 4GBB simulator and performance evaluation

- 1. Construct a flexible and general cross-layer system model
- 2. Cross-layer optimization
 - Upper layer scheduling & statistical multiplexing

- taking the multi-user environment into account
- Prediction of data and channel behavior
- 3. Development of a realistic 4GBB simulator and performance evaluation

- 1. Construct a flexible and general cross-layer system model
- 2. Cross-layer optimization
- 3. Development of a realistic 4GBB simulator and performance evaluation
 - Implementation of physical model and cross-layer optimizations
 - Perform simulations with stochastic channel models
 - Realistic and worst-case
 - Compare against G.fast standard

CURRENT STATE

QoE → QoS (delay, loss, IPDV), power usage, retransmission probability

SUMMARY

- FttC is intermediate step to FttH
- Physical layer transmission techniques in DSL are configured for fixed, worst-case scenarios
- Cross-layer optimization allows for real-time adapting of physical layer, resulting in faster data rates, stable networks and green devices

Thank you for your attention

